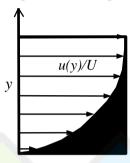
Q. 1 – Q. 25 carry one mark each.

- Q.1 Let \vec{a} , \vec{b} be two distinct vectors that are not parallel. The vector $\vec{c} = \vec{a} \times \vec{b}$ is
 - (A) zero.

(B) orthogonal to \vec{a} alone.

(C) orthogonal to $\vec{a} + \vec{b}$.


- (D) orthogonal to \vec{b} alone.
- Q.2 Consider the function $f(x, y) = \frac{x^2}{2} + \frac{y^2}{3} 5$. All the roots of this function
 - (A) form a finite set of points.
 - (B) lie on an elliptical curve.
 - (C) lie on the surface of a sphere.
 - (D) lie on a hyperbolic curve.
- Q.3 Consider a vector field given by $x\hat{i} + y\hat{j} + z\hat{k}$. This vector field is
 - (A) divergence-free and curl-free.
 - (B) curl-free but not divergence-free.
 - (C) divergence-free but not curl-free.
 - (D) neither divergence-free nor curl-free.
- Q.4 A jet aircraft is initially flying steady and level at its maximum endurance condition. For the aircraft to fly steady and level, but faster at the same altitude, the pilot should
 - (A) increase thrust alone.
 - (B) increase thrust and increase angle of attack.
 - (C) increase thrust and reduce angle of attack.
 - (D) reduce angle of attack alone.
- Q.5 The pilot of a conventional airplane that is flying steady and level at some altitude, deflects the port side aileron up and the starboard aileron down. The aircraft will then
 - (A) pitch, nose up.
 - (B) roll with the starboard wing up.
 - (C) pitch, nose down.
 - (D) roll with the port wing up.
- Q.6 A NACA 0012 airfoil has a trailing edge flap. The airfoil is operating at an angle of attack of 5 degrees with un-deflected flap. If the flap is now deflected by 5 degrees downwards, the C_L versus α curve
 - (A) shifts right and slope increases.
 - (B) shifts left and slope increases.
 - (C) shifts left and slope stays the same.
 - (D) shifts right and slope stays the same.

------ Follow Careerdost on Social Media ------

Q.7 An airplane requires a longer ground roll to lift-off on hot summer days because

- (A) the thrust is directly proportional to free-stream density.
- (B) the thrust is directly proportional to weight of the aircraft.
- (C) the lift-off distance is directly proportional to free-stream density.
- (D) the runway friction is high on hot summer days.

0.8 The velocity profile in an incompressible, laminar boundary layer is shown in the figure below. U is the free-stream velocity, u(y) is the stream-wise velocity component. The area of the black shaded region in the figure below represents the

- (A) boundary layer thickness.
- (B) momentum thickness.
- (C) displacement thickness.
- (D) shape factor.

Q.9 The tangential velocity component 'V' of a spacecraft, which is in a circular orbit of radius 'R' around a spherical Earth ($\mu = GM \rightarrow gravitational parameter of Earth)$ is given by the following expression.

$$(A) V = \sqrt{\frac{\mu}{2R}}$$

(B)
$$V = \sqrt{\frac{\mu}{R}}$$

(A)
$$V = \sqrt{\frac{\mu}{2R}}$$
 (B) $V = \sqrt{\frac{\mu}{R}}$ (C) $V = \frac{2\pi}{\sqrt{\mu}}R^{\frac{3}{2}}$ (D) $V = \frac{2\pi}{\sqrt{\mu}}R^{\frac{2}{3}}$

(D)
$$V = \frac{2\pi}{\sqrt{11}} R^{\frac{2}{3}}$$

Q.10 Equation of the trajectory of a typical space object around any planet, in polar coordinates (r, θ) (i.e. a general conic section geometry), is given as follows. (h is angular momentum, μ is gravitational parameter, e is eccentricity, r is radial distance from the planet center, θ is angle between vectors \vec{e} and \vec{r} .

(A)
$$r = \frac{\binom{h^2/\mu}{\mu}}{1 - e \cos\theta}$$

(B)
$$r = \frac{\left(h^2/\mu\right)}{e^{-cos\theta}}$$

(C)
$$r = \frac{\binom{h^2/\mu}{1+e\cos\theta}}{1+e\cos\theta}$$

(D)
$$r = \frac{\left(h^2/\mu\right)}{e + \cos\theta}$$

In an elliptic orbit around any planet, the location at which a spacecraft has the maximum angular velocity is

(A) apoapsis.

- (B) periapsis.
- (C) a point at $+45^{\circ}$ from periapsis.
- (D) a point at -90° from apoapsis.

----- Follow Careerdost on Social Media -----

GATE 2018				Aerospace Engir	eering	
Q.12	The pitching moment of a positively cambered NACA airfoil about its leading edge at zero-lift angle of attack is					
	(A) negative.(B) positive.(C) indeterminate.(D) zero.					
Q.13	In a low-speed wind tunnel, the angular location(s) from the front stagnation point on a circular cylinder where the static pressure equals the free-stream static pressure, is					
	$(A) \pm 38^0$	(B) $\pm 30^{\circ}$	$(C) \pm 60^0$	(D) 0^0		
Q.14	A thermocouple, mounted flush in an insulated flat surface in a supersonic laminar flow of air measures the					
	 (A) static temperature. (B) temperature greater than static but less than total temperature. (C) total temperature. (D) temperature greater than total temperature. 					
Q.15	A shock wave is r to the air?	noving into still air	in a shock tube. Which	ch one of the following	g happens	
	(A) static temperature increases, total temperature remains constant					

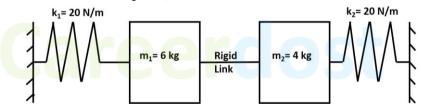
- (A) static temperature increases, total temperature remains constant.
- (B) static temperature increases, total temperature increases.
- (C) static temperature increases, total temperature decreases.
- (D) static pressure increases, total temperature remains constant.
- Q.16 The highest limit load factor experienced by a civil transport aircraft is in the range

$$(A) 0.0 - 2.0$$

(B)
$$2.0 - 5.0$$

(C)
$$5.0 - 8.0$$

(D)
$$8.0 - 10.0$$


- Q.17 Determine the correctness or otherwise of the following statements, [a] and [r]:
 - [a] A closed-section box beam configuration is used in aircraft wings.
 - [r] Closed-section box beam configuration is capable of resisting torsional loads.
 - (A) Both [a] and [r] are true and [r] is the correct reason for [a].
 - (B) Both [a] and [r] are true but [r] is not the correct reason for [a].
 - (C) Both [a] and [r] are false.
 - (D) [a] is true but [r] is false.

----- Follow Careerdost on Social Media -----

- The first law of thermodynamics is also known as conservation of Q.18
 - (A) mass.
 - (B) momentum.
 - (C) energy.
 - (D) species.
- In an ideal gas turbine cycle, the expansion in a turbine is represented by
 - (A) an isenthalpic process.
- (B) an isentropic process.

(C) an isobaric process.

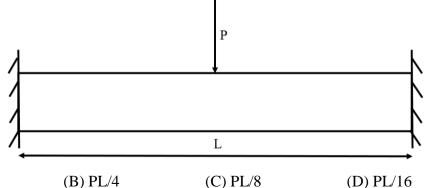
- (D) an isochoric process.
- The determinant of the matrix $\begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}$ is _____ (accurate to one decimal place). Q.20
- The theoretical maximum velocity (in m/s) of air expanding from a reservoir at 700 K is (accurate to two decimal places). Specific heat of air at constant pressure is 1005 J/(kg-K).
- Q.22 For a damped single degree of freedom system with damping ratio of 0.1, ratio of two successive peak amplitudes of free vibration is _____ (accurate to two decimal places).
- Q.23 The natural frequency (in rad/s) of the spring-mass system shown in the figure below is ____ (accurate to one decimal place).

- The stagnation pressures at the inlet and exit of a subsonic intake are 100 kPa and 98 kPa, respectively. The pressure recovery of this intake will be (accurate to two decimal places).
- Q.25 A combustor is operating with a fuel-air ratio of 0.03. If the stoichiometric fuel-air ratio of the fuel used is 0.06, the equivalence ratio of the combustor will be _____ (accurate to two decimal places).

------- Follow Careerdost on Social Media ------ Follow Careerdost

YouTube

Facebook


<u>Instagram</u>

<u>Twitter</u> <u>Pinterest</u>

Q. 26 – Q. 55 carry two marks each.

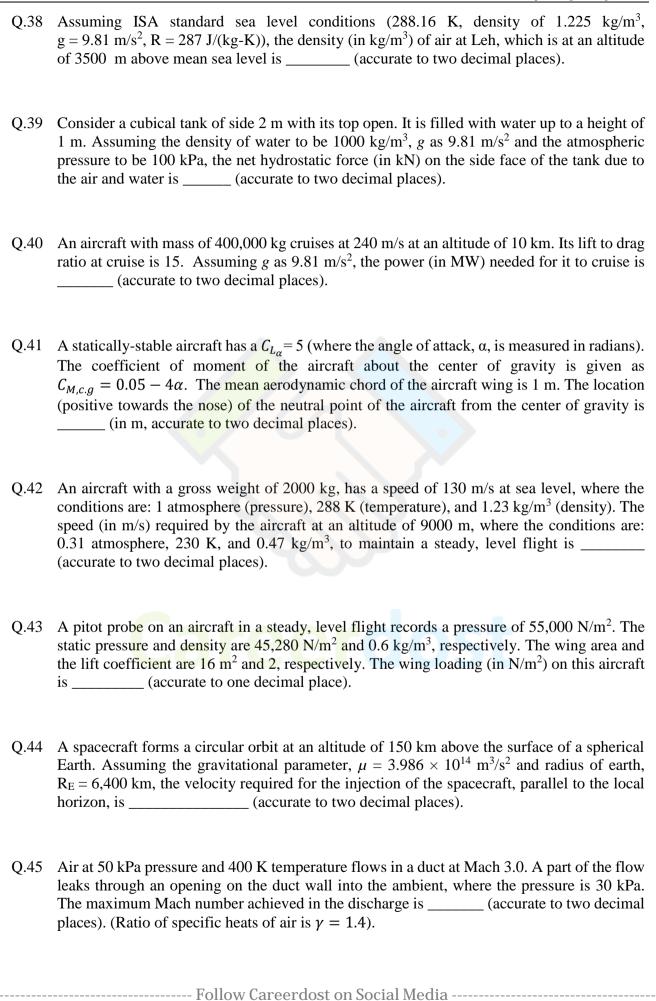
- The solution of the differential equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} = 0$, given that y = 0 and $\frac{dy}{dx} = 1$ at Q.26
- (A) $x(1-e^{-3x})$ (B) $\frac{1}{3}(1-e^{-3x})$ (C) $\frac{1}{3}(1+e^{-3x})$ (D) $\frac{1}{3}xe^{\frac{-3x}{2}}$
- Q.27 The relation between pressure (p) and velocity (V) for a steady, isentropic flow at two points along a streamline is, (c is a constant)
 - (A) $c(p_2^{\gamma} p_1^{\gamma}) = \frac{V_1^2}{2} \frac{V_2^2}{2}$
 - (B) $c(p_2^{\frac{\gamma}{\gamma-1}} p_1^{\frac{\gamma}{\gamma-1}}) = \frac{V_1^2}{2} \frac{V_2^2}{2}$
 - (C) $c(p_2^{\frac{\gamma-1}{\gamma}} p_1^{\frac{\gamma-1}{\gamma}}) = \frac{V_1^2}{2} \frac{V_2^2}{2}$
 - (D) $c(p_2^{\gamma-1}-p_1^{\gamma-1})=\frac{v_1^2}{2}-\frac{v_2^2}{2}$
- Q.28 A thin airfoil is mounted in a low-speed, subsonic wind tunnel, in which the Mach number is 0.1. At a point on the airfoil, the pressure coefficient is measured to be -1.2. If the flow velocity is increased such that the free-stream Mach number is 0.6, the pressure coefficient at the same point on the airfoil will approximately be:
 - (A) -3.5
- (B) 2.9
- (D) -0.75
- A solid circular shaft of diameter d is under pure torsion of magnitude T. The maximum tensile stress experienced at any point on the shaft is
 - (A) $\frac{32T}{\pi d^3}$

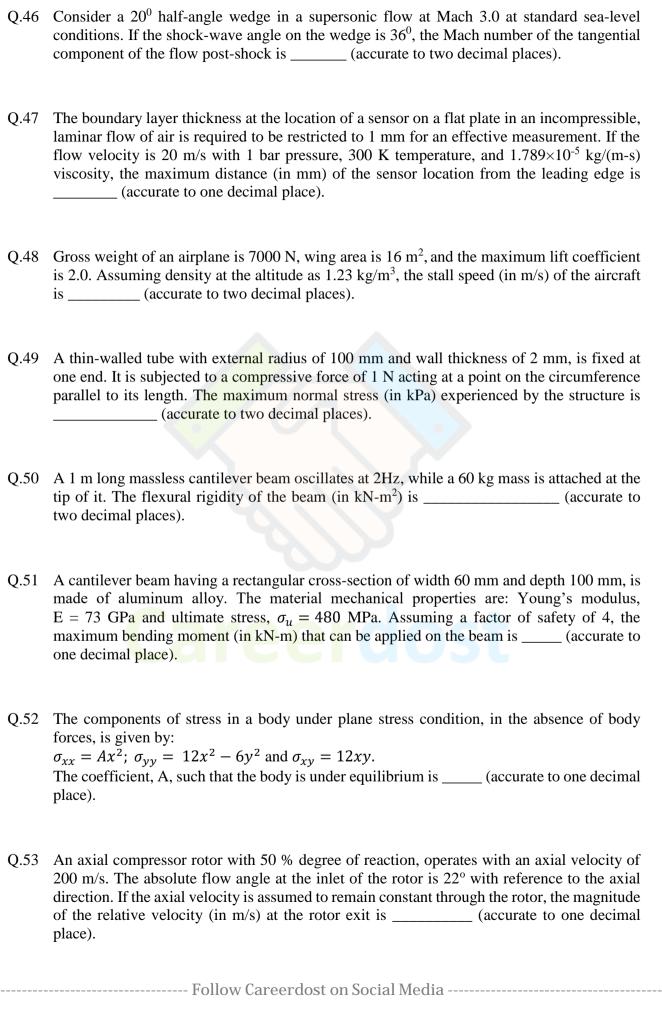
- Q.30 A clamped-clamped beam, subjected to a point load P at the midspan, is shown in the figure below. The magnitude of the moment reaction at the two fixed ends of the beam is

Follow Careerdost on Social Media ------

YouTube

(A) PL/2


Facebook


<u>Instagram</u>

Twitter

Pinterest

Q.31	Which of the following statement(s) is/are true about the state of a body in plane strain condition? P: All the points in the body undergo displacements in one plane only, for example the x-y plane, leading to $\varepsilon_{zz} = \gamma_{xz} = \gamma_{yz} = 0$. Q: All the components of stress perpendicular to the plane of deformation, for example the x-y plane, of the body are equal to zero, i.e. $\sigma_{zz} = \tau_{xz} = \tau_{yz} = 0$. R: Except the normal component, all the other components of stress perpendicular to the plane of deformation of the body, for example the x-y plane, are equal to zero, i.e. $\sigma_{zz} \neq 0$, $\tau_{xz} = \tau_{yz} = 0$.						
	(A) P only	(B) Q only	(C) P and Q	(D) P and R			
Q.32	An aircraft with a turbojet engine flies at a velocity of 100 m/s. If the jet exhaust velocity is 300 m/s, the propulsive efficiency of the engine, assuming a negligible fuel-air ratio, is						
	(A) 0.33	(B) 0.50	(C) 0.67	(D) 0.80			
Q.33	An aircraft with a turboprop engine produces a thrust of 500 N and flies at 100 m/s. If the propeller efficiency is 0.5, the shaft power produced by the engine is						
	(A) 50 kW (C) 125 kW		(B) 100 kW (D) 500 kW				
Q.34	An axial compressor that generates a stagnation pressure ratio of 4.0, operates with inlet and exit stagnation temperatures of 300 K and 480 K, respectively. If the ratio of specific heats (γ) is 1.4, the isentropic efficiency of the compressor is						
	(A) 0.94		(B) 0.81				
	(C) 0.72		(D) 0.63				
Q.35	A rocket has an initial mass of 150 kg. After operating for a duration of 10 s, its final mass is 50 kg. If the acceleration due to gravity is 9.81 m/s ² and the thrust produced by the rocket is 19.62 kN, the specific impulse of the rocket is						
	(A) 400 s (C) 200 s		(B) 300 s (D) 100 s				
	(0) 200 0		(2) 100 5				
Q.36	r^2 r^2 , which is r^2						
	$\oint \vec{v} \cdot ds$, where ds is to two decimal place		ır that encloses the o	rigin, is (accurate			
Q.37	The magnitude of the <i>x</i> -component of a unit vector at the point (1, 1) that is normal to equipotential lines of the potential function $\phi(r) = \frac{1}{r^2+4}$, where $r = \sqrt{x^2 + y^2}$, is (accurate to two decimal places).						
	Follow Careerdost on Social Media						

Q.54 The relative velocity of air leaving a straight radial impeller of a centrifugal compressor is 100 m/s. If the impeller tip speed is 200 m/s, for a slip free operation, the absolute velocity (in m/s) at the impeller exit is ______ (accurate to one decimal place).

Q.55 An aircraft wind tunnel model, having a pitch axis mass moment of inertia (I_{yy}) of 0.014 kg-m², is mounted in such a manner that it has pure pitching motion about its centre of gravity, where it is supported through a frictionless hinge. If the pitching moment (M) derivative with respect to angle of attack (α), denoted by 'M $_{\alpha}$ ', is -0.504 N-m/rad and the pitching moment (M) derivative with respect to pitch rate (q), denoted by 'M $_{q}$ ', is -0.0336 N-m/(rad/s), the damping ratio of the resulting motion due to an initial disturbance in pitch angle is approximately ______ (accurate to three decimal places).

END OF THE QUESTION PAPER

----- Follow Careerdost on Social Media -----