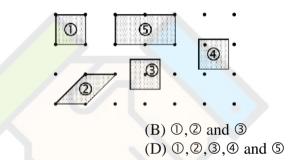

Q. 1 – Q. 25 carry one mark each.

- The eigenvalues of a Hermitian matrix are all **Q**.1
 - (A) real
 - (B) imaginary
 - (C) of modulus one
 - (D) real and positive
- Which one of the following represents the 3p radial wave function of hydrogen atom? (a_0 is Q.2 the Bohr radius)

Q.3 Given the following table,

Group I	Group II
P: Stern-Gerlach experiment	1: Wave nature of particles
Q: Zeeman effect	2: Quantization of energy of electrons in the atoms
R: Frank-Hertz experiment	3 : Existence of electron spin
S: Davisson-Germer experiment	4: Space quantization of angular momentum

which one of the following correctly matches the experiments from Group I to their inferences in Group II?

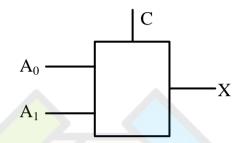

(A) P-2, Q-3, R-4, S-1

(B) P-1, Q-3, R-2, S-4

(C) P-3, Q-4, R-2, S-1

- (D) P-2, Q-1, R-4, S-3
- In spherical polar coordinates (r, θ, ϕ) , the unit vector $\hat{\theta}$ at $(10, \pi/4, \pi/2)$ is Q.4
 - (A) \hat{k}
- (B) $\frac{1}{\sqrt{2}}(\hat{j} + \hat{k})$ (C) $\frac{1}{\sqrt{2}}(-\hat{j} + \hat{k})$ (D) $\frac{1}{\sqrt{2}}(\hat{j} \hat{k})$

- The scale factors corresponding to the covariant metric tensor g_{ij} in spherical polar Q.5 coordinates are
 - (A) $1.r^2.r^2 \sin^2 \theta$ (B) $1.r^2.\sin^2 \theta$
- (C) 1, 1, 1
- (D) $1, r, r \sin \theta$
- Q.6 In the context of small oscillations, which one of the following does NOT apply to the normal coordinates?
 - (A) Each normal coordinate has an eigen-frequency associated with it
 - (B) The normal coordinates are orthogonal to one another
 - (C) The normal coordinates are all independent
 - (D) The potential energy of the system is a sum of squares of the normal coordinates with constant coefficients
- Q.7 For the given unit cells of a two dimensional square lattice, which option lists all the primitive cells?

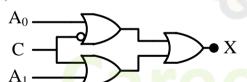


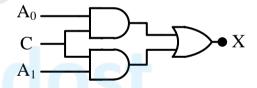
- (A) ① and ②
- (C) ①,②,③ and ④
- Among electric field (\vec{E}) , magnetic field (\vec{B}) , angular momentum (\vec{L}) , and vector potential Q.8 (\vec{A}) , which is/are **odd** under parity (space inversion) operation?
 - (A) \vec{E} only
- (B) $\vec{E} \& \vec{A}$ only (C) $\vec{E} \& \vec{B}$ only
- (D) \vec{B} & \vec{L} only
- The expression for the second overtone frequency in the vibrational absorption spectra of a Q.9 diatomic molecule in terms of the harmonic frequency ω_e and anharmonicity constant x_e is
- (A) $2\omega_e(1-x_e)$ (B) $2\omega_e(1-3x_e)$ (C) $3\omega_e(1-2x_e)$ (D) $3\omega_e(1-4x_e)$
- Q.10 Match the physical effects and order of magnitude of their energy scales given below, where $\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c}$ is fine structure constant; m_e and m_p are electron and proton mass, respectively.

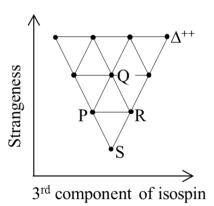

Group I	Group II
P: Lamb shift	1: $\sim \mathcal{O}(\alpha^2 m_e c^2)$
Q : Fine structure	$2: \sim \mathcal{O}(\alpha^4 m_e c^2)$
R : Bohr energy	$3: \sim \mathcal{O}(\alpha^4 m_e^2 c^2/m_p)$
S: Hyperfine structure	$4: \sim \mathcal{O}(\alpha^5 m_e c^2)$

- (A) P-3, Q-1, R-2, S-4
- (B) P-2, Q-3, R-1, S-4
- (C) P-4, O-2, R-1, S-3
- (D) P-2, O-4, R-1, S-3


- The logic expression $\bar{A}BC + \bar{A}\bar{B}C + AB\bar{C} + A\bar{B}\bar{C}$ can be simplified to
 - (A) A XOR C
- (B) A AND \bar{C}
- (C) 0
- (D) 1
- At low temperatures (T), the specific heat of common metals is described by (with α and β Q.12 as constants)
 - (A) $\alpha T + \beta T^3$
- (B) βT^3
- (C) $\exp(-\alpha/T)$ (D) $\alpha T + \beta T^5$
- In a 2-to-1 multiplexer as shown below, the output $X = A_0$ if C = 0, and $X = A_1$ if C = 1. Q.13


Which one of the following is the correct implementation of this multiplexer?


(B)


(C)

(D)

The elementary particle Ξ^0 is placed in the baryon decuplet, shown below, at

- (A) P
- (B)Q
- (C)R
- (D) S

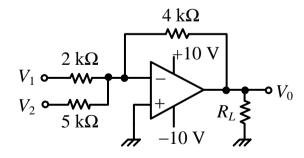
Q.15	The intrinsic/permanent electric dipole moment in the ground state of hydrogen atom is
	$(a_0 \text{ is the Bohr radius})$

- $(A) 3ea_0$
- (B) zero
- $(C) ea_0$
- (D) $3ea_0$

Q.16 The high temperature magnetic susceptibility of solids having ions with magnetic moments can be described by $\chi \propto \frac{1}{T+\theta}$ with T as absolute temperature and θ as constant. The three behaviors i.e. paramagnetic, ferromagnetic and anti-ferromagnetic are described, respectively, by

- (A) $\theta < 0$, $\theta > 0$, $\theta = 0$
- (B) $\theta > 0$, $\theta < 0$, $\theta = 0$
- (C) $\theta = 0$, $\theta < 0$, $\theta > 0$
- (D) $\theta = 0$, $\theta > 0$, $\theta < 0$

Which one of the following is an allowed electric dipole transition?


- (A) ${}^{1}S_{0} \rightarrow {}^{3}S_{1}$ (B) ${}^{2}P_{3/2} \rightarrow {}^{2}D_{5/2}$ (C) ${}^{2}D_{5/2} \rightarrow {}^{2}P_{1/2}$ (D) ${}^{3}P_{0} \rightarrow {}^{5}D_{0}$

Q.18 In the decay, $\mu^+ \rightarrow e^+ + \nu_e + X$, what is X?

- $(A) \gamma$
- (B) $\bar{\nu}_e$
- (D) $\bar{\nu}_u$

A spaceship is travelling with a velocity of 0.7c away from a space station. The spaceship ejects a probe with a velocity 0.59c opposite to its own velocity. A person in the space station would see the probe moving at a speed Xc, where the value of X is _____ (up to three decimal places).

Q.20 For an operational amplifier (ideal) circuit shown below,

if $V_1 = 1$ V and $V_2 = 2$ V, the value of V_0 is _____V (up to one decimal place).

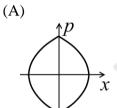
Q.21 An infinitely long straight wire is carrying a steady current *I*. The ratio of magnetic energy density at distance r_1 to that at $r_2 (= 2 r_1)$ from the wire is _____.

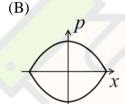
- Q.22 A light beam of intensity I_0 is falling normally on a surface. The surface absorbs 20% of the intensity and the rest is reflected. The radiation pressure on the surface is given by $X I_0/c$, where X is ______ (up to one decimal place). Here c is the speed of light.
- Q.23 The number of independent components of a general electromagnetic field tensor is ______.
- Q.24 If X is the dimensionality of a free electron gas, the energy (E) dependence of density of states is given by $E^{\frac{1}{2}X-Y}$, where Y is _____.
- Q.25 For nucleus 164 Er, a $J^{\pi}=2^+$ state is at 90 keV. Assuming 164 Er to be a rigid rotor, the energy of its 4^+ state is _____ keV (up to one decimal place).

Careerdost

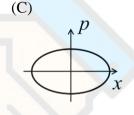
Q. 26 – Q. 55 carry two marks each.

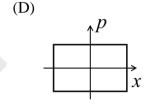
Q.26 Given $\vec{V}_1 = \hat{\imath} - \hat{\jmath}$ and $\vec{V}_2 = -2\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$, which one of the following \vec{V}_3 makes $(\vec{V}_1, \vec{V}_2, \vec{V}_3)$ a complete set for a three dimensional real linear vector space?


(A)
$$\vec{V}_3 = \hat{\imath} + \hat{\jmath} + 4\hat{k}$$

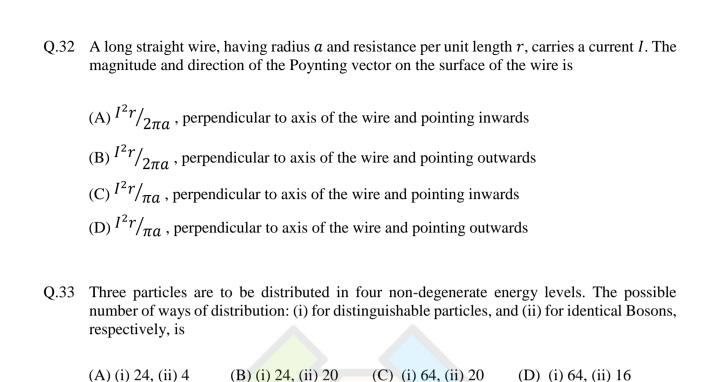

(B)
$$\vec{V}_3 = 2\hat{\imath} - \hat{\jmath} + 2\hat{k}$$

(D) $\vec{V}_3 = 2\hat{\imath} + \hat{\jmath} + 4\hat{k}$


(C)
$$\vec{V}_3 = \hat{\imath} + 2\hat{\jmath} + 6\hat{k}$$


(D)
$$\vec{V}_3 = 2\hat{\imath} + \hat{\jmath} + 4\hat{k}$$

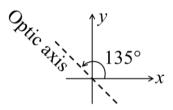
- An interstellar object has speed v at the point of its shortest distance R from a star of much larger mass M. Given $v^2 = 2 GM/R$, the trajectory of the object is
 - (A) circle
- (B) ellipse
- (C) parabola
- (D) hyperbola
- Q.28 A particle moves in one dimension under a potential $V(x) = \alpha |x|$ with some non-zero total energy. Which one of the following best describes the particle trajectory in the phase space?


- Consider an infinitely long solenoid with N turns per unit length, radius R and carrying a current $I(t) = \alpha \cos \omega t$, where α is a constant and ω is the angular frequency. The magnitude of electric field at the surface of the solenoid is
 - $(A) \frac{1}{2} \mu_0 NR \omega \alpha \sin \omega t$

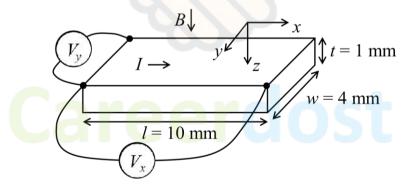
(B) $\frac{1}{2}\mu_0\omega NR\cos\omega t$ (D) $\mu_0\omega NR\cos\omega t$

(C) $\mu_0 NR \omega \alpha \sin \omega t$

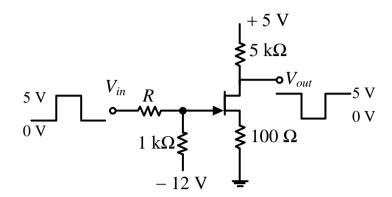
- A constant and uniform magnetic field $\vec{B} = B_0 \hat{k}$ pervades all space. Which one of the Q.30 following is the correct choice for the vector potential in Coulomb gauge?
 - (A) $-B_0(x + y)\hat{i}$ (B) $B_0(x + y)\hat{j}$ (C) $B_0x\hat{j}$


- (D) $-\frac{1}{2}B_0(x\hat{i}-y\hat{j})$
- Q.31 If H is the Hamiltonian for a free particle with mass m, the commutator [x, [x, H]] is
 - (A) \hbar^2/m
- (B) $-\hbar^2/m$ (C) $-\hbar^2/(2m)$ (D) $\hbar^2/(2m)$

Q.34 The term symbol for the electronic ground state of oxygen atom is


- (A) ${}^{1}S_{0}$ (B) ${}^{1}D_{2}$ (C) ${}^{3}P_{0}$ (D) ${}^{3}P_{2}$
- Q.35 The energy dispersion for electrons in one dimensional lattice with lattice parameter a is given by $E(k) = E_0 \frac{1}{2}W\cos ka$, where W and E_0 are constants. The effective mass of the electron near the bottom of the band is
 - (A) $\frac{2\hbar^2}{Wa^2}$ (B) $\frac{\hbar^2}{Wa^2}$ (C) $\frac{\hbar^2}{2Wa^2}$ (D) $\frac{\hbar^2}{4Wa^2}$
- Q.36 Amongst electrical resistivity (ρ) , thermal conductivity (κ) , specific heat (C), Young's modulus (Y), and magnetic susceptibility (χ) , which quantities show a sharp change at the superconducting transition temperature?
 - (A) ρ, κ, C, Y (B) ρ, C, χ (C) ρ, κ, C, χ (D) κ, Y, χ

Q.37 A quarter wave plate introduces a path difference of $\lambda/4$ between the two components of polarization parallel and perpendicular to the optic axis. An electromagnetic wave with $\vec{E} = (\hat{x} + \hat{y}) E_0 e^{i(kz - \omega t)}$ is incident normally on a quarter wave plate which has its optic axis making an angle 135° with the *x*-axis as shown.



The emergent electromagnetic wave would be

- (A) elliptically polarized
- (B) circularly polarized
- (C) linearly polarized with polarization as that of incident wave
- (D) linearly polarized but with polarization at 90° to that of the incident wave
- Q.38 A *p*-doped semiconductor slab carries a current I = 100 mA in a magnetic field B = 0.2 T as shown. One measures $V_y = 0.25$ mV and $V_x = 2$ mV. The mobility of holes in the semiconductor is ______ m²V⁻¹s⁻¹ (up to two decimal places).

Q.39 An n-channel FET having Gate-Source switch-off voltage $V_{\text{GS(OFF)}} = -2 \text{ V}$ is used to invert a 0-5 V square-wave signal as shown. The maximum allowed value of R would be _____ $k\Omega$ (up to two decimal places).

Q.40 Inside a large nucleus, a nucleon with mass 939 MeV c^{-2} has Fermi momentum 1.40 fm⁻¹ at absolute zero temperature. Its velocity is Xc, where the value of X is _____ (up to two decimal places).

$$(\hbar c = 197 \text{ MeV-fm})$$

- Q.41 4 MeV γ -rays emitted by the de-excitation of ^{19}F are attributed, assuming spherical symmetry, to the transition of protons from $1d_{3/2}$ state to $1d_{5/2}$ state. If the contribution of spin-orbit term to the total energy is written as $C(\vec{l} \cdot \vec{s})$, the magnitude of C is _____ MeV (up to one decimal place).
- Q.42 An α particle is emitted by a ²³⁰₉₀Th nucleus. Assuming the potential to be purely Coulombic beyond the point of separation, the height of the Coulomb barrier is _____ MeV (up to two decimal places).

$$(\frac{e^2}{4\pi\epsilon_0} = 1.44 \text{ MeV-fm}, r_0 = 1.30 \text{ fm})$$

Q.43 For the transformation

$$Q = \sqrt{2q} e^{-1+2\alpha} \cos p$$
, $P = \sqrt{2q} e^{-\alpha-1} \sin p$

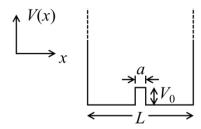
(where α is a constant) to be canonical, the value of α is _____.

Q.44 Given

$$\frac{d^2f(x)}{dx^2} - 2\frac{df(x)}{dx} + f(x) = 0,$$

and boundary conditions f(0) = 1 and f(1) = 0, the value of f(0.5) is _____ (up to two decimal places).

Q.45 The absolute value of the integral


$$\int \frac{5z^3 + 3z^2}{z^2 - 4} dz,$$

over the circle |z - 1.5| = 1 in complex plane, is _____ (up to two decimal places).

Q.46 A uniform circular disc of mass m and radius R is rotating with angular speed ω about an axis passing through its center and making an angle $\theta = 30^{\circ}$ with the axis of the disc. If the kinetic energy of the disc is $\alpha m\omega^2 R^2$, the value of α is _____ (up to 2 decimal places).

Q.47 The ground state energy of a particle of mass m in an infinite potential well is E_0 . It changes to $E_0(1 + \alpha \times 10^{-3})$, when there is a small potential bump of height $V_0 = \frac{\pi^2 \hbar^2}{50mL^2}$ and width $\alpha = L/100$, as shown in the figure. The value of α is _____ (up to two decimal places).

Q.48 An electromagnetic plane wave is propagating with an intensity $I=1.0\times 10^5~\rm Wm^{-2}$ in a medium with $\epsilon=3\epsilon_0$ and $\mu=\mu_0$. The amplitude of the electric field inside the medium is _____ $\times 10^3~\rm Vm^{-1}$ (up to one decimal place).

$$(\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}, \mu_0 = 4\pi \times 10^{-7} \text{NA}^{-2}, c = 3 \times 10^8 \text{ ms}^{-1})$$

- Q.49 A microcanonical ensemble consists of 12 atoms with each taking either energy 0 state, or energy ϵ state. Both states are non-degenerate. If the total energy of this ensemble is 4ϵ , its entropy will be _____ k_B (up to one decimal place), where k_B is the Boltzmann constant.
- Q.50 A two-state quantum system has energy eigenvalues $\pm \epsilon$ corresponding to the normalized states $|\psi_{\pm}\rangle$. At time t=0, the system is in quantum state $\frac{1}{\sqrt{2}}[|\psi_{+}\rangle + |\psi_{-}\rangle]$. The probability that the system will be in the same state at $t=h/(6\epsilon)$ is _____ (up to two decimal places).
- Q.51 An air-conditioner maintains the room temperature at 27 °C while the outside temperature is 47 °C. The heat conducted through the walls of the room from outside to inside due to temperature difference is 7000 W. The minimum work done by the compressor of the air-conditioner per unit time is ______ W.
- Q.52 Two solid spheres A and B have same emissivity. The radius of A is four times the radius of B, and temperature of A is twice the temperature of B. The ratio of the rate of heat radiated from A to that from B is ______.
- Q.53 The partition function of an ensemble at a temperature T is $Z = \left(2\cosh\frac{\varepsilon}{k_B T}\right)^N,$

where k_B is the Boltzmann constant. The heat capacity of this ensemble at $T = \frac{\varepsilon}{k_B}$ is $X N k_B$, where the value of X is _____ (up to two decimal places).

Q.54 An atom in its singlet state is subjected to a magnetic field. The Zeeman splitting of its 650 nm spectral line is 0.03 nm. The magnitude of the field is ______ Tesla (up to two decimal places).

$$(e = 1.60 \times 10^{-19} \,\mathrm{C}, m_e = 9.11 \times 10^{-31} \,\mathrm{kg}, c = 3.0 \times 10^8 \,\mathrm{ms}^{-1})$$

Q.55 The quantum effects in an ideal gas become important below a certain temperature T_Q when de Broglie wavelength corresponding to the *root mean square* thermal speed becomes equal to the inter-atomic separation. For such a gas of atoms of mass 2×10^{-26} kg and number density 6.4×10^{25} m⁻³, $T_Q =$ ______ $\times 10^{-3}$ K (up to one decimal place).

$$(k_B = 1.38 \times 10^{-23} \text{ J/K}, h = 6.6 \times 10^{-34} \text{ J-s})$$

END OF THE QUESTION PAPER

